

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Approved by AICTE, New Delhi, Affiliated to JNTUK, Kakinada)

Accredited by NAAC with 'A+' Grade

Recognised as Scientific and Industrial Research Organisation SRKR MARG, CHINA AMIRAM, BHIMAVARAM – 534204 W.G.Dt., A.P., INDIA

Regula										
		CIVIL ENGINE	EERING (H	Ionor	: s)					
	(With	COURSE S effect from 2023-24			h onv	vards)			
Course Code	Cours	se Name	Year/ Sem	Cr	L	Т	P	C.I.E	S.E.E	Total Marks
B23CEH101	Structural Dynam	III-I	3	3	0	0	30	70	100	
B23CEH201	Matrix Methods o	Matrix Methods of Structures			3	0	0	30	70	100
B23CEH301	Earthquake Engin	eering	IV-I	3	3	0	0	30	70	100
B23CEH401	*MOOCS-I		III-I to IV-I	3	7	[-)		100
B23CEH501	*MOOCS-II		III-I to IV-I	3	Ĭ					100
B23CEH601	601 *MOOCS-III			3	TU UŞ	Ļ	يا			100
			TOTAL	18	9	0	0	90	210	600

*Three MOOCS courses of any CIVIL ENGINEERING related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 12 weeks (3 Credits) courses other than the courses offered need to be takenby prior information to the concern. These courses should be completed between III Year I Semester to IV Year I Semester

Cou	urse Coo	le Category	L	T	P	C	C.I.E.	S.E.E.	Exam	
B23	3CEH10	1 Honors	3			3	30	70	3 Hrs.	
			1	•	1	•	<u>'</u>			
			STI	RUCTU	RAL DY	NAMICS	}			
			(Ho	onors De	gree cou	se in CE)				
Cour	se Obje	ctives:								
1.	Introdu	ces to the Conce	pt of vibr	ation of	SDOF Sy	stem				
2.	Introdu	ces to Damped a	nd Undan	nped syst	ems					
3.		ces to Free and fe								
4.	Introdu	ces to Free and F	Forced vib	ration O	f MDOF	System				
Cour	se Outc	omes: At the end	of the co	urse, Stu	dent will	be able to)		ı	
S.No				Outco	ome				Knowledge	
1	TI J	4	41 C-		C:14: -				Level	
1. 2.		stand and Analy					ibustion o	f CDOE	K4 K4	
3.		stand and Analystand and Analy			•				K4	
<u>3.</u> 4.		stand and Analy							K4	
		stand and Analy							K4	
<i>J</i> .	Olluci	Stand and Analy	Ze the con	icepts of	Withpic	Degree	1 TTCCGOL	ii System	IX+	
			7	SV	LLABU	2				
UNI' (8 H	T-I Irs)	Elements of vibing Comparison of Stasic Definitions Simple Harmonic Structure	tatic Loa - Types C	ding and If Vibrat	d Dynamions- Re	ic Loadir sponse Ol	ig – Caus the Syst	ses of Dyna em- Degree	amic Effects – s Of Freedom-	
UNIT	Γ-II (Hrs)									
UNIT-III (10 Hrs) Damped Free Vibration of SDOF System: Introduction- Types of Damping Damping- Coulomb damping- Structural Damping-Active Damping or Damping- passive Damping- Measurement of Damping- Logarithmic Decrement Half Power Bandwidth Method					or Negative					
UNIT	I-IV Hrs)	Two Degrees of Vibrations of U Undamped System	ndamped	System	n-Dampe	d Free V	/ibration-		_	

	Multiple Degrees of Freedom Systems: Introduction – Free Vibration Analysis							
UNI	UNIT-V Undamped system- Natural Frequencies and Normal Modes- Orthogonality and Normal							
(10 H	Hrs) Principles- Damped Systems- Decoupling of Equations/concept of moda							
	Superposition Method.							
Text 1	Books:							
1.	Structural Dynamics Anil K Chopra, 4edition, Prentice HallPublishers							
2.	Structural Dynamics Theory & Computation – Mario Paz, CBS Publishes and Distributors							
Refere	ence Books:							
1.	Structural Dynamics and Aseismic design – S.R.Damodarasamy and S.Kavitha, PHI Learning							
1.	private limited							
2.	Dynamics of Structures by Clough &Penzien 3e, Computers & Structures Inc.							
3.	Structural Dynamics of Earthquake Engineering - Theory and Application using Mathematical							
3.	and Mat lab- S.Rajasekharan							

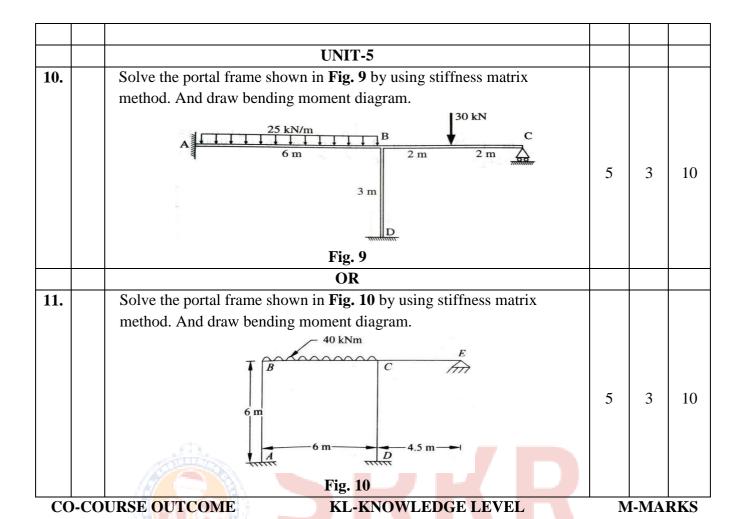
		Course C	ode: E	B23CE	H101
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		III B.Tech. I Semester MODEL QUESTION PAPER			
		STRUCTURAL DYNAMICS			
		(Honors Degree Course in CE)			
Tim	e: 3 H	Irs. N	Iax. N	Iarks:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
			10 x 2	= 20 N	Iarks
			CO	KL	M
1.	a).	Discuss the basic concepts involved in structural vibrations.	1	2	2
	b).	Describe the consequences of vibrations in structures.	1	2	2
	c).	Explain the influence of gravitational force on free vibration.	2	2	2
	d).	State and explain the assumptions made in undamped free vibration analysis.	2	2	2
	e).	Describe the characteristics of viscous damping.	3	2	2
	f).	Differentiate between passive and active damping.	3	2	2
	g).	Explain the concept of a shear building in vibration analysis.	4	2	2
	h).	Describe the effects of damping on forced vibration response.	4	2	2
	i).	Explain the term "mode shapes" in MDOF systems.	5	2	2
	j).	Describe the significance of decoupling equations in vibration analysis.	5	2	2
	97	ENGINEERING COLLEGE			
		Estd 1980 AUTONOMOUS	5 x 10	= 50 N	Iarks
		UNIT-1	CO	KL	M
2.	a).	Compare Static Loading and Dynamic Loading?	1	2	5
		A Harmonic motion has a Maximum Velocity of 6 m/s and it has a			
	b).	frequency of 12 cps. Determine its amplitude, its period and its	1	3	5
		Maximum acceleration.			
		OR			
3.	a).	Define i) Natural Frequency ii) Amplitude ii) Degree of Freedom	1	2	5
	b).	Explain Vibration and Types of Vibration?	1	2	5
		UNIT-2			
4.		Derive expression for response of SDOF system subjected to Undamped free vibration	2	3	10
		OR			
5.		Derive the equation of motion of a vibratory system using Simple Harmonic Motion	2	3	10
		UNIT-3			
6.	a).	Explain Logarithmic Decrement Method for Measuring damping of a vibration System? Page 4 of 15	3	2	5

		3	2	5
	OR			
7.	Derive expression for response of SDOF system subjected to damped free vibration	3	3	10
	UNIT-4			
8.	Determine the Natural Frequencies and mode Shape of the given system.	4	3	10
	OR			
9.	Determine the natural Frequencies and mode shape for the structure as shown in below figure. $ \frac{m_2 = 660 \text{ kg}}{2.5 \text{ m}} $ $ \frac{2.5 \text{ m}}{2I} $ $ \frac{1 = 5 \times 10^5 \text{ mm}^4}{E = 2.5 \times 10^5 \text{ N/mm}^2} $ OLLEGE	4	3	10
	TINITE 5			
10.	UNIT-5 Derive the equation of motion of Multi Degree freedom systems (MDOF)	5	4	10
	OR			
11.	Determine the Natural Frequencies and the mode Shapes for the Shear building as shown in below figure. $m=1$ $k_1 = 600 \text{ kN/m}$ $m=1.5$ $k_2 = 1200 \text{ kN/m}$ $m=2$ $k_3 = 1800 \text{ kN/m}$	5	4	10
	nun nun			

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

Cou	ırse Code	Category	L	T	P	С	C.I.E.	S.E.E.	Exam	
B23	3CEH201	Honors	3	3		3	30	70	3 Hrs.	
				•		•	•		1	
		N	IATRIX	METH	ODS OF	STRUC	TURES			
			(He	onors De	gree cou	se in CE)				
Cour	se Object									
1.		are the students t and Stiffness ma			owledge	in the ma	trix metho	ds such as fl	exible matrix	
2.	To prepa	are the students t	o analyze	e the bear	ms and p	ortal fram	e problem	s by matrix	methods.	
Cour	se Outco	mes: At the end	of the co	urse, Stu	dent will	be able to)			
S.No				Outco	ome				Knowledge Level	
1.		tand the basic of atrix methods.	concepts	involved	in the a	nalysis o	f structura	l elements	K2	
2.	Analyz	e the beams by u	sing flex	ibility m	atrix met	hod.			K4	
3.	Analyz	e the portal fram	es by usi	ng flexib	ility mat	rix metho	d.		K4	
4.	Analyz	e the beams by u	sing Stif	fness ma	trix meth	od.			K4	
5.	Analyz	e the portal fram	es by usi	ng Stiffn	ess matri	x method	•/		K4	
					LLABU					
UNI	1 - 1	troduction: Ma								
(8 H	rc)	atic and kinematethods. 1980	tic indete	erminacy	-Structu	ire idealiz	zation – fl	exibility and	1 stiffness	
UNI	r H k	avihility Matri	v Matha	d (Doom	a). Analy	vais of an	ntinuous l	aama yyitha	ut sinking of	
(10 H										
(101	225)	pports (up to mu								
UNIT	Г-Ш Б	exibility Matri	x Metho	d (Porta	ıl Frame	s): Analy	sis of poi	tal frames v	without sway	
(10 H	Irs) co	ondition (up to m	aximum	degree of	three).		_		-	
	·									
UNIT		tiffness Matrix			•	sis of cor	ntinuous b	eams withou	ut sinking of	
(10 H	Irs) su	pports (up to ma	ximum d	egree of t	three)					
UNI	T-V S1	iffness Matrix	Mathad	(Portal	Framos). Analys	eis of nor	tal frames v	vithout eway	
(10 H		ondition (up to m		•). Anarys	sis of por	iai irailies v	villiout sway	
(101		marition (up to III	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Text	Books:									
1.		analysis of struct	ures,Rob	ert E Ser	net-Pren	tice Hall-	Englewoo	d cliffs-New	Jercy	
	Matrix analysis of structures, Robert E Sennet-Prentice Hall-Englewood cliffs-New Jercy Advanced structural analysis, P. Dayaratnam -Tata McGrawhill publishing company limited.									
2.	Advanc	ed structurai ana	19818, P. 1	Dayaratn	am - 1 ata	McGraw	niii pubiis	nıng compai	ny iimitea.	

Refe	Reference Books:							
1.	Indeterminate Structural analysis, C K Wang, Amazon Publications.							
2.	Matrix Analysis of Frame dVan Nostrand Reinhold, New york Structures 3e-William We aver,Jr,James M.Gere,							
3.	Foundation Analysis and design, J.E.Bowls, 5e, Amazon Publications.							



	SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
	III B.Tech. II Semester MODEL QUESTION PAPER			1
	MATRIX METHOD OF STRUCTURES			
	(Honors Degree Course in CE)			
e: 3 I	Hrs. M	ax. M	arks:	70 N
	Answer Question No.1 compulsorily			
	Answer ONE Question from EACH UNIT			
	Assume suitable data if necessary			
	1	0 x 2 =	= 20 N	Mark
		CO	KL	M
a).	Define static and kinematic indeterminacy of a structure.	1	2	2
b).	Differentiate between flexibility and stiffness methods.	1	2	2
c).	Explain the procedure to form a flexibility matrix for a two-span continuous beam.	2	2	2
d).	Compute the degree of static indeterminacy for a continuous beam with three supports.	2	2	2
e).	List the steps in analyzing a portal frame using the flexibility method under non-sway conditions.	3	2	2
f).	Determine the static indeterminacy of a fixed-base portal frame and identify the redundants.	3	2	2
g).	State the advantages of the stiffness method over the flexibility method in beam analysis.	4	2	2
h).	List the basic assumptions made in the stiffness matrix method for beam analysis. d 1980	4	2	2
i).	Explain the assembly procedure of the global stiffness matrix for a portal frame.	5	2	2
j).	Solve for member end moments of a simple portal frame using the stiffness method.	5	2	2
	5	v 10 -	- 50 N	/Jark
				M
a).	Explain degree of static indeterminacy and kinematic Indeterminacy of a structure.	1	2	4
b).	Calculate degree of Static and Kinematic indeterminacy of the following structures (Fig. 1)			
	a). b). c). d). g). j).	SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B.Tech. II Semester MODEL QUESTION PAPER MATRIX METHOD OF STRUCTURES (Honors Degree Course in CE) ie: 3 Hrs. M Answer Question No.1 compulsorily Answer ONE Question from EACH UNIT Assume suitable data if necessary 1 a). Define static and kinematic indeterminacy of a structure. b). Differentiate between flexibility and stiffness methods. c). Explain the procedure to form a flexibility matrix for a two-span continuous beam. d). Compute the degree of static indeterminacy for a continuous beam with three supports. e). List the steps in analyzing a portal frame using the flexibility method under non-sway conditions. f). Determine the static indeterminacy of a fixed-base portal frame and identify the redundants. g). State the advantages of the stiffness method over the flexibility method in beam analysis. h). List the basic assumptions made in the stiffness matrix method for beam analysis. i). Explain the assembly procedure of the global stiffness matrix for a portal frame. j). Solve for member end moments of a simple portal frame using the stiffness method.	SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A) III B.Tech. II Semester MODEL QUESTION PAPER MATRIX METHOD OF STRUCTURES (Honors Degree Course in CE) ie: 3 Hrs. Answer Question No.1 compulsorily Answer ONE Question from EACH UNIT Assume suitable data if necessary 10 x 2: CO a). Define static and kinematic indeterminacy of a structure. b). Differentiate between flexibility and stiffness methods. c). Explain the procedure to form a flexibility matrix for a two-span continuous beam. d). Compute the degree of static indeterminacy for a continuous beam with three supports. e). List the steps in analyzing a portal frame using the flexibility method under non-sway conditions. f). Determine the static indeterminacy of a fixed-base portal frame and identify the redundants. g). State the advantages of the stiffness method over the flexibility method in beam analysis. h). List the basic assumptions made in the stiffness matrix method for beam analysis. f). Explain the assembly procedure of the global stiffness matrix for a portal frame. j). Solve for member end moments of a simple portal frame using the stiffness method. 5 x 10: UNIT-1 CO a). Explain degree of static indeterminacy and kinematic Indeterminacy of a structure. b). Calculate degree of Static and Kinematic indeterminacy of the	HI B.Tech. II Semester MODEL QUESTION PAPER MATRIX METHOD OF STRUCTURES (Honors Degree Course in CE) Re: 3 Hrs. Answer Question No.1 compulsorily Answer ONE Question from EACH UNIT Assume suitable data if necessary 10 x 2 = 20 N CO KL a). Define static and kinematic indeterminacy of a structure. 1 2 b). Differentiate between flexibility and stiffness methods. 1 2 c). Explain the procedure to form a flexibility matrix for a two-span continuous beam. d). Compute the degree of static indeterminacy for a continuous beam with three supports. e). List the steps in analyzing a portal frame using the flexibility method under non-sway conditions. f). Determine the static indeterminacy of a fixed-base portal frame and identify the redundants. g). State the advantages of the stiffness method over the flexibility method in beam analysis. h). List the basic assumptions made in the stiffness matrix method for beam analysis. f). Explain the assembly procedure of the global stiffness matrix for a portal frame. j). Solve for member end moments of a simple portal frame using the stiffness method. 5 x 10 = 50 N UNIT-1 CO KL a). Explain degree of static indeterminacy and kinematic Indeterminacy of a structure. b). Calculate degree of Static and Kinematic indeterminacy of the

		**************************************	1	ı	1
		(a)			
		(b)			
		fin (c) ₩			
		1 2 3			
		2 3 4 5			
		1 6 5 7 8 9 9			
		(d) 11 12 12 11 12 11 11 12 11 11 11 11 11			
		Fig. 1			
		OR			
3.	a).	Explain relation between flexibility matrix method and stiffness	1	2	4
	<i>u)</i> .	matrix	_	_	
		method.			
	b).	Develop stiffness matrix for the beam shown in Fig. 2 with reference			
	50	to the co-ordinates shown.			
		- 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		$A \longrightarrow 3$	1	3	6
		1	1	3	O
		EI constant 2			
		Fig. 2			
		UNIT-2 EDINIC COLLECE			
4.		Solve the continuous beam as shown in the Fig.3 by using flexibility			
		matrix method. Take EI is constant throughout the structure. Draw			
		bending moment and diagrams			
		100 <u>kN</u> 60 <u>kN</u>	2	3	10
				3	10
		A = A = A = A = A = A = A = A = A = A =			
		2 m 2 m 2 m 2 m			
	<u> </u>	Fig. 3			
		OR			
5.		Solve the continuous beam shown in Fig. 4 by using stiffness			
		matrix method. And draw bending moment diagram.			
		20 kN 30 kN			
		B 40 kN/m C	2	3	10
		2 m	_		
		2 <i>I</i> 5 m <i>I</i>			
		Fig. 4			
		~			
		UNIT-3			

Page **9** of **15**

6.	Solve the portal frame shown in Fig. 5 by using flexibility matrix			
	method. And draw bending moment diagram.			
	40 kN			
	<u> </u>			
	$\frac{1}{2} \frac{B}{3 \text{ m}}$			
	3m	3	3	10
	6 m D			
	Fig. 5			
	OR			
7.	Solve the portal frame shown in Fig. 6 by using flexibility matrix	3	3	10
	method. And draw bending moment diagram.			
	40 kNm			
	$T \stackrel{\triangle}{B} C$			
	6 m			
	6 m			
	EN Fig. 6 EERING COLLEGE			
	Estd 1980 AUTONOMOUS			
	UNIT-4			
8.	Solve the continuous beam as shown in the Fig. 7 by using			
	stiffness matrix method. And draw bending moment diagram.			
	50 kN/m 120 kN			
		4	3	10
	$A \longrightarrow B \longrightarrow C$			
	4.0 m 1.5 m 1.5 m			
	Fig. 7			
	OR			
9.	Solve the continuous beam as shown in the Fig. 8 by using stiffness			
	matrix method. And draw bending moment diagram.			
	12 kN/m			
	20 kN-m			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	3	10
	40			
	4.0 m 1.0 m 2.0 m			
	Fig. 8 Page 10 of 15			
	Page 10 of 15			

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

Estd. 1980 AUTONOMOUS

Cou	rse Code	Category	L	T	P	C	C.I.E.	S.E.E.	Exam
B230	CEH301	Honors	3			3	30	70	3 Hrs.
				•					
			EART	HQUA	KE ENG	INEERI	NG		
			(Но	nors De	gree cou	rse in CE)		
Cours	e Objecti	ves:							
1.		the fundame					-	mechanism	ns, tectonics
		Ground motion							
2.	Learn the	e fundamental	s of build	ing code	e based s	tructural	design		
Соли	o Outoon	ange At the en	dofthoo	ourse C	tudont v	ill be obl	2 40		
Cours	e Outcon	nes: At the en	ı oı me c	ourse, S	tudent w	iii be abi	= 10		Knowledge
S. No				Outco	ome				Level
4	Unders	tand Element	s of Seis	mology	and clas	sify Eart	hquakes a	and Seismic	
1.		Map of India				·	1		K2
2.	Unders	tand Earthqua	ke Respo	nse Spe	ctrum				K2
3.	Determ	ine the lique	faction o	of Soils	and ab	le to un	derstand	concept of	K3
3.	Aseismi	c Design of R	C Structu	res					N.3
4.	Analyz	e and Design o	of RC Bui	ilding A	s per IS1	893 (PAI	RT 1):200)2	K4
5.		<mark>Du</mark> ctile <mark>De</mark> tai 920:1993	ing of R	C Struc	tures Sul	ojected to	Seismic	Forces As	K4
	16			7			77.		
	7		EI	SYI	LLABUS	3 11 13	UULL	EGE	
UNI (10 I	T-I	Engineering Section of the tectonics of The earth-Earthquake-Ts	Seismic Seismot	waves- ectonics	Earthqu of Indi	iake Size ia- Seism	- Local E nicity of	Effects- Inte	rnal structure
UNI (10 I	Concepts of PGA-Site —Site Specific Response Spectra-Response Spectrum I								esign Spectra-
UNI: (10]	F-III A	iquefaction of Methods to Reaseismic Desarchitectural Consideration -	educe Li ign of Consider	quefacti RC St ation- (on-Factoructures Geotechr	ors Contr – Intro nical Con	olling Licoduction- nsideration	quefaction Design I on – Struc	- Concept of Methodology-

	UNIT-IV General Principles- load combinations and Increase in Permissible Stresses (10 Hrs) Design Spectrum- Buildings-Dynamic Analysis- Torsion- Step by Step Procedu For Seismic Analysis of RC Buildings							
	T-V Hrs)	Ductile Detailing of RC Structures Subjected to Seismic Forces As per IS 3920:1993: Introduction- Design of Flexural Members- Longitudinal Reinforcement- Web Reinforcement- Design of Columns and Frame Members Subjected to Bending and Axial load- Design of joints of Frames						
		Subjected to Bending and Fixial four Besign of Joints of Frances						
Text I	Books:							
1.	Eartho	quake Resistant Design of Structures Pankaj Agarwal and Manish ShriKhande,						
	Prenti	ce -Hall of India, 2007, New Delhi.						
2.	Struct	ural Dynamics and Aseismic design - S.R.Damodarasamy and S.Kavitha, PHI						
	Learn	ing private limited						
Refer	ence Bo	ooks:						
1.	Eartho	quake Resistant Design of Structures- S.K. Duggal, Oxford Publications						
2.	Seism	ic design of reinforced concrete and masonry buildings by Paulay and Priestley						
3.	Eartho	quake Resistant Design and Risk Reduction- David Dowrick						

		Course C	ode: B	23CE	H301
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		IV B.Tech. I Semester MODEL QUESTION PAPER			
		EARTHQUAKE ENGINEERING			
		(Honors Degree Course in CE)			
Tim	e: 3 F		Iax. M	larks:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
	1				<u>Iarks</u>
	<u> </u>		CO	KL	M
1.	a).	Give the classification of earthquakes based on magnitude.	1	1	2
	b).	Define Tsunami.	1	1	2
	c).	Define response spectrum.	2	1	2
	d).	What is site specific response spectra?	2	1	2
	e).	Define pounding.	3	1	2
	f).	Differentiate between local and global ductility.	3	2	2
	g).	List the type of irregularities in buildings.	4	1	2
	h).	What are the load combinations accounted in limit state design?	4	1	2
	i).	Write the codal provision regarding lap splice in longitudinal reinforcement in columns.	5	1	2
	j).	Mention the any two requirements of web reinforcement in flexural members.	5	1	2
	1	Estd. 1980 AUTONOMOUS	ı	l	I
			5 x 10	= 50]	Marks
		UNIT-1			
2.		What is plate tectonic theory of origin of earthquakes and explain	1	2	10
		associated type of movement at the plate boundaries.			
		OR			
3.	a).	Explain the characteristics of different types of seismic waves.	1	2	6
	b).	Explain the concept of elastic rebound theory with a neat sketch.	1	2	4
		UNIT-2			
4.		Explain Response Spectrum of Sinusoidal Pulse?	2	2	10
		OR			
5.		Explain the Response Spectrum of Water Tank Subjected to Base Acceleration?	2	2	10
		UNIT-3			
6.	a).	Explain Types of Liquefactions and Effects of Liquefaction of Soils.	3	2	5
	b).	Explain Methods to Reduce Liquefaction.	3	2	5
		1	1	l	1

	OR			
7.	Explain Design Methodology according to Architectural, Geotechnical	3	2	10
	and Structural Design Considerations			
	UNIT-4			
8.	Explain general Aseismic Design Principles	4	2	10
	OR			
9.	Determine the design horizontal Seismic Coefficient for an ordinary	4	3	10
	reinforced concrete moment resisting Frame hospital building without			
	infill panels for a damping of 5 %. The building is Situated in Salem.			
	Height of the Building is 22m and it is resting on Hard Soil.			
	UNIT-5			
10.	Explain Ductile Design of Flexural Members?	5	2	10
	OR			
11.	Explain Ductile Design of Columns and Frames Subjected to Bending	5	2	10
	and Axial Load?			

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a single Question for 10 marks

ENGINEERING COLLEGE
AUTONOMOUS